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If protesters can coordinate, the probability that an anti-government protest

turns into a successful revolution is higher under repressive than under demo-

cratic regimes. This is true for arbitrary social networks with heterogeneous

agents. The implications of the provided model are illustrated using data on

protests, revolutions, and political terror worldwide between 1976 and 2014.

Introduction

The spread of political activism in a society can be modeled as a diffusion process in a network

(1–3), using models from epidemiology (4), physics (5), or computer science (6), most of which

focus on the link between network properties and diffusion dynamics (7,8). A crucial difference

between these disciplines and the social sciences is, however, that in the latter an individual,

i.e. a vertex in the underlying network, makes a decision on whether or not to become active

based on her information and preferences (9–11), whereas in the former they simply become

active if a threshold in their neighborhood is crossed. So, results in the social sciences that

are derived from these models should be treated with caution: factoring in human behavior

requires heterogeneous agents with potentially incomplete information who can communicate
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Figure 1: Suppose that initially the black vertices in a) are active, and each one is happy to be
active alone; the white vertices are inactive, and each one wants to be active if they know that
there are at least four other active vertices; and nobody knows that anyone else is active. In b) the
straight lines depict meetings of people who can communicate and coordinate, whereas arrows
depict (additional) unilateral observations without the possibility of communication. Then A,
B, and C have an incentive to become active together: A knows that, if they become active,
there are at least four active individuals besides her, namely B, C, and the two outside the clique
she has observed; the same holds true for C. D, on the other hand, only knows about A, B, and
C, so he will not become active. An “I go if you go”-commitment between A, B, and C would
allow them to jointly become active, so that the new state in d) is reached. If coordination was
impossible, the number of active individuals would not change.

and observe each other. In particular, agents who are close – friends, families, or partners – may

coordinate and take their decision together. Figure 1 illustrates this idea.

The aim of this article is to analyse how political violence (12) and social media (13) affect

the dynamic and outcome of a protest that may turn into a revolution. While restricting the

access to social media slows down a protest, repression has an ambiguous effect. If a successful

revolution requires some powerful individuals to become active then the probability of a rev-

olution (given a protest) is higher under more repressive regimes. This finding, relying on the

human nature to communicate and coordinate, is illustrated in Figure 2: repression increases

the number of revolutions per protest.

1 Transition Probabilities

Individuals of a (finite) society N have to decide between being active (that is to participate in

a protest) or being inactive. The decision is based on the anticipated outcome of the protest,

which in turn depends on the (private) belief on who else is active. The belief of individual i is
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Figure 2: left: the distribution of protests and revolutions between 1976 and 2014 over the five
levels of the Political Terror Scale (The PTS has five levels, level 1 countries being under a
secure rule of law and level 5 countries with terror expanded to the whole population). – right:
the probability that an anti-government protest turns into a revolution is 0 in PTS-1-countries
and gradually increases to its maximum of about 1% in PTS-5-countries. (Data are explained
in the Supplementary Material, Appendix A.)

captured by a collection Si of subsets ofN \{i}. A state consists of a set S of active individuals

and a vector S = (Si)i∈N of people’s beliefs. An individual’s expected future utility depends

on her expectation about who will become active, how likely it is that the revolution will be

successful, or what the consequences of a successful or failed attempt of a revolution are. All

these considerations shall be contained in the (ordinal) utility function ui, where ui(S ′) shall

be interpreted as i’s expected future utility if exactly the members of S ′ were active. Given

the context it fair to assume that ui is monotonic, i.e. the more individuals are active, the more

attractive it is to become active as well. As i has only incomplete information, she must derive

her utility from her belief Si. Individuals are assumed to be very risk adverse, so given belief

Si individual i becomes active if ui (Si ∪ {i}) ≥ ui (Si) for all Si ∈ Si.

Over time people randomly observe or meet others: observations are unilateral, whereas

meetings (either physical or in social media) enable people to communicate (recall Figure 1b).

Given the interpretation of meetings, it shall be assumed that if any two people meet the same
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person, they meet each other as well. So, observations are modeled as directed graphs G (with

vertex set N ), whereas meetings are undirected subgraphs H of G (also with vertex set N ) in

which each connected component is a clique. Since the two are not independent of each other,

I shall refer to the pair (G,H) as an observation.

At each point in time such an observation is randomly drawn and each individual i updates

her belief: if she observes an individual j being active, she now believes that j is active; if

she observes an individual k to be inactive, she now believes that k is inactive. Individuals

might have (partial) information about each other’s utilities, so that they can infer the behavior

of (some) unobserved individuals from their observation. For instance if one observes a man

being active and knows that he would not be active without his wife, one must conclude that

his wife is active as well. However, people are not required to have full information about the

others’ utility functions, so that in general they are not certain about who is active.

Besides the ability to extract additional information from observations, there is another

mechanism that crucially affects the dynamics of social unrest, namely coordination. Sup-

pose there is a couple, both inactive and knowing that the other is inactive as well, such that

given their beliefs both prefer to be inactive, but they would prefer to be active if their partner

were active as well. If coordination is impossible, they will not become active – which is highly

unrealistic as they probably talk and make a joint decision à la “I go if you go”. More general,

if C is a clique in a meeting graph H , the members of C play a coordination game in which

they are allowed to communicate. Since they have monotonic utility functions, this game has

a unique strong Nash equilibrium (14) with a maximal set of active individuals, say K. I shall

assume that they play this Nash equilibrium and that each i ∈ C observes that each j ∈ K is

active (recall Figure 1c). These sets K shall be called coordination units. Every time a new ob-

servation is drawn, a new game is being played and the set of active individuals might change.

I shall write (S,S ) →u
G,H (T,T ) if observation (G,H) causes a transition from state (S,S )
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to state (T,T ) given the utility functions u = (ui)i∈N .

Since observations are random events, these transitions are random as well; and the proba-

bility of a transition from (S,S ) to (T,T ) is simply the probability that an observation (G,H)

occurs with (S,S ) →u
G,H (T,T ). As these transition probabilities are static, they define a

Markov process which starts in the state where nobody is active and everybody believes that

nobody is active. The monotonicity of the utility functions imply that the process is monotonic:

over time more individuals become active. (In particular, the model allows active individuals

could become inactive again, but they prefer not to.) If observations are drawn according to

probability distributions β or γ such that under β it is more likely that “large” groups of peo-

ple observe each other or meet, then the process resulting from β will be faster than the one

resulting from γ. This emphasizes the role of social media which allows exactly this kind of

coordination.

The steady states of the Markov process that can be reached with positive probability are

those states in which no possible observation can cause any group of individuals to change their

decisions or beliefs. So, these steady states are stronger than Nash equilibria, but weaker than

strong Nash equilibria: it might be profitable for some coalition to defect, but such a coalition

will not meet with positive probability.

2 Political Repressions and Their Implications

The set of coalitions that are sufficiently large to overthrow the government shall be denoted

by W ; clearly if S ∈ W then S ′ ∈ W for each S ′ with S ⊆ S ′. Under repression i’s utility

function will be vi with vi(Si) ≤ ui(Si) for all Si ⊆ N with i ∈ Si and vi(S
′
i) = ui(S

′
i)

for S ′i ⊆ N \ {i}. So, active individuals receive lower utility, whereas the utility of inactive

individuals is not affected. However, the government cannot affect the utility function after the

critical mass has been reached. Hence, vi(S ′′i ) = ui(S
′′
i ) for all S ′′i ∈ W .
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Figure 3: The numbers of protests (left) and revolutions (right) per country-year observation
increase with political violence until a PTS value of 4.

Although this form of repression seems to affect activists only, its effect on protest dynamics

is ambiguous. For any fixed belief an individual’s decision to become active may be reversed;

meanwhile observing one protester under repression can cause the belief that many more (un-

observed) people are active since this protester is active despite the repression. Hence there is

an indirect informational effect that opposes the direct effect on the utility functions. This in-

formational effect, however, can be large only if there are already many active individuals; and

it does not exist at all if there are no active individuals. So, we can expect a clear detrimental

effect of political violence only if repression is sufficiently severe. This is in line with the data

in Figure 3 where the number of protests increases with political repression up until PTS-level

4, and then decreases again.

Most revolutions succeeded when some very powerful players became active: the Iranian

Revolution ended with the Supreme Military Council’s declaration to be neutral on February

11, 1979; the Tunisian Revolution ended with the ouster of President Ben Ali by the military

on January 14, 2011 (15); and the Ukrainian Revolution succeeded when the Parliament ousted

President Yanukovych on February 22, 2014. These players can be introduced in my model as

well: an individual i is an opportunist if i participates in a protest only if she believes that it will
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immediately reach a critical mass, and if i’s utility function is publicly known. That is i becomes

active only if for any Si ∈ Si it holds that Si ∪ {i} ∈ W ; and if i becomes active, everybody

who observes i knows that the revolution will be successful. Note that repression cannot reverse

an opportunists decision to become active as ui (Si) = vi (Si) for any all Si ∈ W . Reflecting

the power of opportunists it shall be assumed that a revolution can only be successful if at least

one opportunist is active.

Result In any state of the Markov process that is reached with positive probability the prob-

ability of a transition into a successful revolution is at least the same under a more repressive

regime.

This result applies when a government does not change its expected behavior in the course of a

protest. In particular, if a government is expected to violently intervene in the course of a protest

(reflected by a high PTS value), the actual intervention will not have an effect on people’s utility

functions. An alternative way to dissolve a protest is to make concessions (16). Concessions

could be interpreted as a sign of weakness causing even more people to protest (17), but here

another effect is more important: opportunists may prefer to remain inactive when they are

accommodated, whereas political violence will not affect their decision. Hence, loyalty of

powerful individuals is important for a repressive regime to survive (18).

3 Conclusion

One would expect to see rare but large jumps in the size of anti-government protests rather

than a smooth gradual increase under a repressive regime. This is in line with the observations

of (12), namely that revolutions under repressive regimes are quick and unanticipated. The

model also underlines the importance of social media for the process dynamics: they are the
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devices that allow for the coordination of large groups and, together with the opportunists, are

key to explain the instability that is caused by political violence.
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Table 1: Revolutions and Mass Protests 1976 - 2014
PTS∗ 1 2 3 4 5
Revolutions 0 2 12 11 4
Protests 625 742 1339 1195 390
Country-Year Observations 1707 1821 1671 754 319
Protests per Observation .366 .407 .801 1.585 1.223
Revolutions per Protest 0 .0027 .0090 .0092 .0103

Supplementary Material

A Data Selection

Table 1 contains the data that are depicted in Figures 2 and 3. The time frame from 1976 to 2014

is chosen, since PTS data from (19) are available since 1976 and data on protests from (20) are

available until 2014.1 Note that not for all countries these data exist for all years; each country-

year combination for which both data are available is counted in Table 1. During this period (21)

lists 39 events that are categorized as Resignation of Executive due to Poor Performance or

Loss of Authority. In seven cases the political change was due to military intervention or rebel

movements rather than protests,2 in two cases the political leader was impeached,3 and in one

case the government stepped back after a lost war.4 The remaining 29 events are contained in

Table 1. Since these events can have a huge impact on the PTS in the year of occurrence,5 the

latter is calculated as PTS∗ = m
12
PTS0 + 12−m

12
PTS−1 rounded to the closest integer. Hereby,

PTS0 is the PTS value in the year of the event, PTS−1 is the value in the previous year, and m

is the month of the event.6

1 (20) distinguishes between Germany and East Germany, while (19) distinguishes between Germany (from
1990), East Germany, and West Germany (until 1989). PTS data from West Germany in the latter data set are used
for protests in Germany in the former.

2Bolivia 1982, East Timor 2006, Georgia 1992, Guinea-Bissau 1999, Honduras 2009, Lesotho 1990, Liberia
2003

3Lithuania 2004, Madagascar 1996
4Argentina 1982
5For instance, after the Tunisian revolution the PTS value fell from 3 in 2010 to 1 in 2011.
6Except for the Iranian Revolution 1979 where PTS−1 is not available. Here, PTS∗ = PTS0.
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B Mathematical Appendix

The utility function ui is monotonic if ui (Si ∪ {i}) ≤ ui (Ti ∪ {i}) for any two coalitions

Si ⊆ Ti ⊆ N \ {i}, and ui (Ti ∪K) ≥ ui (Ti) for all K ⊆ N with i ∈ K and all Ti ⊆ N \ {i}

whenever there is Si ⊆ Ti with ui (Si ∪K) ≥ ui (Si). Hence, if i is active her utility rises with

the number of active individuals; and if a coalition Si ∪K is large enough for i to be active, so

is each supercoalition Ti. A coalition S is Nash-stable if ui (S) ≥ ui (S \ {i}) for all i ∈ S. A

coalition that is not Nash-stable cannot be sustained as at least one individual has a reason to

leave it immediately.

An individual i may have (partial) information about the utilities of others (or information

about the information about the utilities of others), allowing her to draw inferences from any

observation. For instance, she might know that some individual j will only become active if

another individual k is active as well. Denote by S ∗
i ⊆ 2N\{i} the collection of sets (without

i) that i considers Nash stable.7 The only restriction shall be that S ∗ contains all Nash-stable

coalition without i, that is if S is Nash stable then i cannot assume it is not. It should be noted

that S ∗
i depends on the players’ utility functions, that is S ∗

i = S ∗
i,u.

A belief of player i is a collection of sets Si ⊆ S ∗
i . The two implicit assumptions here are

that i always knows whether she is active, and that (she thinks) she can change her status without

being observed by others. As individuals do not exactly know who is active, their decisions

must be based on their beliefs. I shall assume that individuals are pessimistic with respect to the

number of active individuals, so they become active if and only if ui (Si ∪ {i}) ≥ ui (Si) for all

Si ∈ Si.

Individuals constantly observe their environment and update their beliefs. Suppose that

individual i thinks that Si is the true state of the world, and that she observes the members of
7If i has no information at all then S ∗i = 2N\{i}.
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C ⊆ N \ {i} becoming active, and those of D ⊆ N \ (C ∪ {i}) inactive. Then i must now

believe that the true state of the world lies in the set

ΦSi
(C,D) = {Ti ∈ S ∗

i : (Si \D) ∪ C ⊆ Ti ⊆ N \D} .

Suppose that individual i with belief Si discovers that the members of A ⊆ N \ {i} have been

active, those of B ⊆ N \ (A ∪ {i}) inactive. She then verifies which of her beliefs might have

been true, namely of those Si ∈ Si with A ⊆ Si ⊆ N \B. The overall belief updating process

can, hence, be captured by the function

Φu
Si

(A,B,C,D) =
⋃

Si∈Si:A⊆Si⊆N\B

ΦSi
(C,D) .

Note that, in general, the updated belief might be an empty set; in this paper, however, the

non-emptyness is guaranteed (see the Lemma below).

Let (S,S ) be a state and let (G,H) be an observation. Denote by Gi, Hi be the neighbors

of i in the graphs G and H , i.e. Gi the set of individuals that i observes, and Hi ⊆ Gi is the

set of individuals that i meets. The players in Hi (who all meet) play a simultaneous move

game with strategies being active or inactive. In order to find the payoffs in this game define for

K ⊆ Hi and j ∈ Hi

Ψj (K) = ΨG,H
S,Sj ,u

(K) = ΦSj
(Gj ∩ S,Gj \ S,K, ∅)

That is,R ∈ Ψj (K) ifR is consistent with i’s observation that the members ofGi∩S have been

active, those of Gi \ S have been inactive, the members of K are becoming active, and nobody

is becoming inactive.8 It is easy to see that Ψ (K) ⊆ Ψ (K ′) whenever K ′ ⊆ K. Hence, if

ui (T ′i ∪ {i}) ≥ ui (T ′i \R′) for allR ⊆ Hi and all T ′i ∈ Ψ (K ′) then ui (Ti ∪ {i}) ≥ ui (Ti \R)

8This belief is an ex ante belief: once the equilibrium is being played, further information might be revealed,
namely that the members of (Hi ∩ S) \K have become inactive. Whether or not individuals take that into account
after the game has been played is not relevant for the results of this paper, as it will turn out that no active individual
will become inactive again (see the Lemma below).
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for all R ⊆ Hi and all Ti ∈ Ψ (K) by the monotonicity of ui. This implies that there is a

unique largest strong Nash equilibrium Ki in the game that is played among Hi. The transition

(S,S ) →G,H (T,T ) is, therefore, well-defined with T =
⋃

i∈N Ki and Ti = Ψi (Ki) for all

i ∈ N . For two states (S,S) and (T,T) the probability of a transition from the former to the

latter (given a vector of utility functions u) is given by

µT,T
S,S =

∑
G,H:(S,S)→u

R,Q(T,T)

γ (G,H) , (1)

where γ (G,H) is the probability that observation (G,H) occurs. These transition probabilities

define a Markov process over the set of states. One can define an order D on that set with

(S,S )D (T,T ) if T ⊆ S. The following lemma proves the Markov process is monotonic with

respect to that order if it starts in the state where nobody is active and everybody believes that

nobody is active (this state satisfies the premise of the lemma).

Lemma Let (S,S ) be a state with S ∈ Si ⊆ S ∗
i for all i ∈ N . Suppose that for all

∅ 6= R ⊆ N there is j ∈ R ∩ S with uj (Sj ∪ {j}) ≥ uj (Sj \R) for all Sj ∈ Sj . Then for

each observation (G,H) and any state (T,T ) with (S,S ) →u
G,H (T,T ) it holds that S ⊆ T

and T ∈ Ti ⊆ S ∗
i for all i ∈ N . Moreover, for each ∅ 6= R ⊆ N there is i ∈ R ∩ T with

ui (Ti) ≥ ui (Ti \R) for all Ti ∈ Ti.

Proof. Let (S,S ) have the required properties, let (G,H) be an observation and let (T,T )

satisfy (S,S ) →u
G,H (T,T ). Let i ∈ N and let Ki be the set of players who choose be-

ing active in the largest strong equilibrium of the game played within Hi. By construction

Ti ⊆ S ∗
i , and for each Ti ∈ Ti there is Si ∈ Si with Si ⊆ Ti. If i ∈ S then for

each Si ∈ Si it holds that ui (Si ∪ {i}) ≥ ui (Si). Hence, for each Ti ∈ Ti it holds that

ui (Ti ∪ {i}) ≥ ui (Ti) by the monotonicity of ui. Therefore, again by the monotonicity of ui,

i ∈ Ki ⊆ T , so that S ⊆ T . Since Gi ∩ S ⊆ S ⊆ N \ (Gi \ S) and T ∈ S ∗
i and S ∪K ⊆ T
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it holds that T ∈ Ti. Let R ⊆ N and assume that for all j ∈ R ∩ T there is Tj ∈ Tj with

uj ((Tj \R) ∪ ((Tj ∪ {j}) ∩R)) = uj (Tj ∪ {j}) < uj (Tj \R). Then the monotonicity of uj

implies uj (Sj ∪ {j}) ≤ uj ((Sj \R) ∪ ((Tj ∪ {j}) ∩R)) < uj (Sj \R) for all Sj ∈ Sj with

Sj \ R ⊆ Tj \ R. Since such Sj exists by construction this is a contradiction to the premise of

the Lemma. Q.E.D.

One can define a partial order � on the set of observations by setting (G1, H1) � (G2, H2)

for two observations (G1, H1) and (G2, H2) with G2 being a subgraph of G1 and H2 being a

subgraph of H1. Let β and γ are distributions over the set of observations such that β first order

stochastically dominates γ with respect to the order �, and let µ and ν be the corresponding

transition probabilties. Then µ.,.
S,S first order stochastically dominates ν .,.S,S with respect to D

for any (S,S ) that is reached with positive probability. Let the corresponding processes be

denoted by X and Y . Since they are monotonic, a result from (22) implies that X(t) first order

stochastically dominates Y (t) for all t ≥ 0.

I shall now turn to the proof of the main result.

Proof of the Result Let u and v be two vectors of utility functions such that u is the status

quo and v is the result of more repressions, and let the transition probabilities (as in Equation

(1) be given by µ and λ, respectively. Since the process starts at a state (∅,S ) with ∅ ∈ Si for

all i ∈ N , all states that are reached with positive probability satisfy the premise of the Lemma.

Let u and v be as described. It must be proven that∑
(T,T ):T∈W

µT,T
S,S ≤

∑
(T,T ):T∈W

λT,TS,S

for any state (S,S ). For this purpose let (T,T ) be a state with T ∈ W , and let (G,H) be such

that (S,S ) →u
G,H (T,T ). If such (G,H) does not exist then µT,T

S,S = 0 = λT,TS,S . Otherwise,

T =
⋃

i∈N Ki, where Ki are defined as before. Let i ∈ T be an opportunist. Since the identity
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and utility function of i are publicly known, it must hold that Tj ⊆ W for all j ∈ Ki. Hence,

for any Tj ∈ Tj and any K ′ ⊆ K there is j ∈ K ′ such that

vj (Tj) = uj (Tj) ≥ uj (Tj \K ′) = vj (Tj \K ′)

where the first and the last equation come from the definition of vj . This means that the largest

strong Nash Equilibrium in Hi with utility functions v must contain Ki as active individuals.

Hence, if (T ′,T ′) is such that (S,S ) →v
G,H (T ′,T ′) then T ′

i W as before and T ′ ∈ T ′
i by

the Lemma. So, if (G,H) causes a transition from (S,S ) to a state (T,T ) with T ∈ W under

u, it causes a transition from (S,S ) to a state (T ′,T ′) with T ′ ∈ W under v. This proves the

claim. Q.E.D.
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